1,758 research outputs found

    10-Band Graphic Equalizer

    Get PDF

    Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations

    Get PDF
    We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-Domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anti-correlations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems Kepler-25, Kepler-26, Kepler-27, and Kepler-28, containing eight planets and one additional planet candidate.Comment: Accepted to MNRA

    The kepler-19 system: a transiting 2.2 R ⊕ planet and a second planet detected via transit timing variations

    Get PDF
    We present the discovery of the Kepler-19 planetary system, which we first identified from a 9.3day periodic transit signal in the Kepler photometry. From high-resolution spectroscopy of the star, we find a stellar effective temperature T= 5541 60K, a metallicity [Fe/H] = -0.13 0.06, and a surface gravity log(g) = 4.59 0.10. We combine the estimate of T and [Fe/H] with an estimate of the stellar density derived from the photometric light curve to deduce a stellar mass of M = 0.936 0.040 M and a stellar radius of R = 0.850 0.018 R (these errors do not include uncertainties in the stellar models). We rule out the possibility that the transits result from an astrophysical false positive by first identifying the subset of stellar blends that reproduce the precise shape of the light curve. Using the additional constraints from the measured color of the system, the absence of a secondary source in the high-resolution spectrum, and the absence of a secondary source in the adaptive optics imaging, we conclude that the planetary scenario is more than three orders of magnitude more likely than a blend. The blend scenario is independently disfavored by the achromaticity of the transit: we measure a transit depth with Spitzer at 4.5 μm of 547+113 -110 ppm, consistent with the depth measured in the Kepler optical bandpass of 567 6 ppm (corrected for stellar limb darkening). We determine a physical radius of the planet Kepler-19b of Rp = 2.209 0.048 R ⊕; the uncertainty is dominated by uncertainty in the stellar parameters. From radial velocity observations of the star, we find an upper limit on the planet mass of 20.3 M ⊕, corresponding to a maximum density of 10.4 g cm -3. We report a significant sinusoidal deviation of the transit times from a predicted linear ephemeris, which we conclude is due to an additional perturbing body in the system. We cannot uniquely determine the orbital parameters of the perturber, as various dynamical mechanisms match the amplitude, period, and shape of the transit timing signal and satisfy the host star's radial velocity limits. However, the perturber in these mechanisms has a period ≲ 160days and mass ≲ 6 M Jup, confirming its planetary nature as Kepler-19c. We place limits on the presence of transits of Kepler-19c in the available Kepler data

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Clinical Trials in Head Injury

    Full text link
    Traumatic brain injury (TBI) remains a major public health problem globally. In the United States the incidence of closed head injuries admitted to hospitals is conservatively estimated to be 200 per 100,000 population, and the incidence of penetrating head injury is estimated to be 12 per 100,000, the highest of any developed country in the world. This yields an approximate number of 500,000 new cases each year, a sizeable proportion of which demonstrate signficant long-term disabilities. Unfortunately, there is a paucity of proven therapies for this disease. For a variety of reasons, clinical trials for this condition have been difficult to design and perform. Despite promising pre-clinical data, most of the trials that have been performed in recent years have failed to demonstrate any significant improvement in outcomes. The reasons for these failures have not always been apparent and any insights gained were not always shared. It was therefore feared that we were running the risk of repeating our mistakes. Recognizing the importance of TBI, the National Institute of Neurological Disorders and Stroke (NINDS) sponsored a workshop that brought together experts from clinical, research, and pharmaceutical backgrounds. This workshop proved to be very informative and yielded many insights into previous and future TBI trials. This paper is an attempt to summarize the key points made at the workshop. It is hoped that these lessons will enhance the planning and design of future efforts in this important field of research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63185/1/089771502753754037.pd

    Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON)

    Get PDF
    In this study, an extension on the previously reported status of the COllaborative Carbon Column Observing Network\u27s (COCCON) calibration procedures incorporating refined methods is presented. COCCON is a global network of portable Bruker EM27/SUN FTIR spectrometers for deriving column-averaged atmospheric abundances of greenhouse gases. The original laboratory open-path lamp measurements for deriving the instrumental line shape (ILS) of the spectrometer from water vapour lines have been refined and extended to the secondary detector channel incorporated in the EM27/SUN spectrometer for detection of carbon monoxide (CO). The refinements encompass improved spectroscopic line lists for the relevant water lines and a revision of the laboratory pressure measurements used for the analysis of the spectra. The new results are found to be in good agreement with those reported by Frey et al. (2019) and discussed in detail. In addition, a new calibration cell for ILS measurements was designed, constructed and put into service. Spectrometers calibrated since January 2020 were tested using both methods for ILS characterization, open-path (OP) and cell measurements. We demonstrate that both methods can detect the small variations in ILS characteristics between different spectrometers, but the results of the cell method indicate a systematic bias of the OP method. Finally, a revision and extension of the COCCON network instrument-to-instrument calibration factors for XCO2, XCO and XCH4 is presented, incorporating 47 new spectrometers (of 83 in total by now). This calibration is based on the reference EM27/SUN spectrometer operated by the Karlsruhe Institute of Technology (KIT) and spectra collected by the collocated TCCON station Karlsruhe. Variations in the instrumental characteristics of the reference EM27/SUN from 2014 to 2017 were detected, probably arising from realignment and the dual-channel upgrade performed in early 2018. These variations are considered in the evaluation of the instrument-specific calibration factors in order to keep all tabulated calibration results consistent

    Examination of Late Palaeolithic archaeological sites in northern Europe for the preservation of cryptotephra layers

    Get PDF
    We report the first major study of cryptotephra (non-visible volcanic ash layers) on Late Palaeolithic archaeological sites in northern Europe. Examination of 34 sites dating from the Last Termination reveals seven with identifiable cryptotephra layers. Preservation is observed in minerogenic and organic deposits, although tephra is more common in organic sediments. Cryptotephra layers normally occur stratigraphically above or below the archaeology. Nearby off-site palaeoclimate archives (peat bogs and lakes <0.3 km distant) were better locations for detecting tephra. However in most cases the archaeology can only be correlated indirectly with such cryptotephras. Patterns affecting the presence/absence of cryptotephra include geographic position of sites relative to the emitting volcanic centre; the influence of past atmospherics on the quantity, direction and patterns of cryptotephra transport; the nature and timing of local site sedimentation; sampling considerations and subsequent taphonomic processes. Overall, while tephrostratigraphy has the potential to improve significantly the chronology of such sites many limiting factors currently impacts the successful application
    corecore